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Abstract

Deep learning techniques have demonstrated remarkable success in medical image
segmentation, but challenges remain in simultaneously capturing both global con-
textual dependencies and local structural details in the presence of structural vari-
ability. To address these challenges, we propose U-ViL (U-Net-like Vision-LSTM),
a novel U-shaped architecture fused with Vision Long Short-Term Memory units.
U-ViL incorporates Vision-LSTM blocks as the backbone of an encoder-decoder
framework, aiming to model both low-level features and long-range dependencies.
We evaluate the proposed model on the Automated Cardiac Diagnosis Challenge
dataset and benchmark it against widely used segmentation architectures, includ-
ing the conventional U-Net and the transformer-based Swin-Unet. Although the
current implementation of U-ViL does not yield overall superior segmentation
accuracy, it reveals distinct qualitative feature representations and segmentation
patterns compared to prevailing architectures and could benefit from further hi-
erarchical refinement. These findings highlight the potential for implementing a
unified framework combining recurrent mechanisms that capture long-range spatial
dependencies with localized spatial precision for medical image analysis. All
source code is publicly available at GitHub.

1 Introduction

In recent years, medical image segmentation has become a benchmark task in deep learning, serving
both as a critical tool for clinical diagnosis and as a quantitative benchmark for evaluating novel
deep learning architectures. Deep learning has become particularly valuable in high-stakes clinical
contexts, such as cardiology and neuroimaging, where accurate and reproducible segmentation
directly correlates with patient outcomes. Traditionally, Convolutional Neural Networks (CNNs)
and their variants have been the dominant architectures in this field, with models such as U-Net
[15] achieving state-of-the-art performance across diverse medical applications like ultrasounds [2]
and MRIs [1]. These models are particularly effective in medical contexts due to their abilities to
retain high-level semantic structure through their encoder-decoder structures and capture localized
spatial information through skip connections. However, despite their empirical success, the focus of
conventional CNNs and U-Nets on localized patterns can lead them to struggle to capture long-range
dependencies and global contextual information [5]]. This distinction is vital to maintain accurate
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results in the presence of structural variability, occlusions, and low-contrast boundaries that are
frequently inherent in medical imaging.

Recent advances in Vision Transformers (ViTs) [17, 18] have brought renewed interest to modeling
long-range dependencies and global context within empirical applications. While this approach is
promising in medical image analysis because they do not rely on locality-biased convolutional filters,
ViTs often require extensive computational resources and large-scale datasets to train effectively.
Additionally, ViTs typically operate over non-overlapping image patches, which can lead to a loss
of granular spatial details necessary for precise segmentation. Given the need for both detailed
localization and global representation learning, we propose U-ViL (U-Net-like Vision-LSTM), a
novel segmentation architecture that integrates Vision-LSTM blocks as the backbone of an encoder-
decoder framework inspired by U-Net. Our architecture seeks to leverage the long-range modeling
capacity of Vision-LSTM modules to capture global dependencies while preserving the structural
precision offered by U-Net.

In order to validate our proposed approach, we use the Automated Cardiac Diagnosis Challenge
(ACDC) dataset [3]], a benchmark consisting of cine-MRI sequences across multiple cardiac patholo-
gies. The ACDC dataset presents a diverse range of cardiac pathologies and maintains consistent
spatiotemporal resolution, making it a fitting benchmark for performance evaluation. Accordingly,
to assess the effectiveness of U-ViL relative to both U-Net and ViT baselines, we employ standard
segmentation metrics, such as Dice score and Hausdorff Distance, to assess region overlap and
boundary accuracy. To this end, we seek to demonstrate whether U-ViL, a lightweight hybrid ar-
chitecture of U-Net and extended LSTM units, can combine to perform high-performance medical
image segmentation. In doing so, we evaluate whether combining global dependency modeling and
spatial encoding should continue to be explored across future domains.

2 Related Work

2.1 U-Net and its Variants

U-Net, originally introduced by Ronneberger et al. [[L5]], quickly emerged as a foundational ar-
chitecture for a broad variety of medical image segmentation tasks. U-Net follows a symmetric
encoder-decoder design that downsamples to extract high-level semantic representations and then
upsamples with skip connections to reintegrate low-level spatial information. Since U-Net’s inception,
a variety of derivatives have been heuristically proposed to enhance feature extraction, improve gen-
eralization, and address domain-specific challenges. For example, Residual U-Net [[19]] incorporates
residual blocks to mitigate vanishing gradients, while Attention U-Net [[14] introduces attention
gates within skip connections to selectively emphasize salient features. Despite these applications
continuing to tackle unique tasks in a wide variety of domains, U-Net remains inherently limited
by its lack of explicit mechanisms to model spatial recurrence. This motivates the integration of
recurrent modules to enable the model to maintain coherence across feature hierarchies and improve
its representation of complex anatomical structures.

2.2 Vision-LSTM Networks

Extended Long Short-Term Memory (XLSTM) and Vision-LSTM networks were introduced as an
enhancement over traditional LSTM architectures to enable more effective information flow via
parallelization [[1]]. In vision tasks, XLSTM’s ability to capture fine-grained temporal relationships has
made them attractive in applications like video sequencing [[7]] and stock price prediction [10]. Recent
studies have also attempted to deploy Vision-LSTM Networks on semantic segmentation tasks, such
as on remotely sensed images [21]]. Additionally, Vision-LSTM networks have shown relevance in
the medical field, with self-supervised xXLSTM-UNet architectures demonstrating high performance
on a variety of tumor segmentation tasks [13]. While segmentation pipelines are currently dominated
by convolutional or transformer backbones, recurrent architectures like LSTM and GRU can offer
advantages in both modeling continuity and structure—characteristics especially relevant for semantic
segmentation.



2.3 Hybrid Architectures

Given the applicability of both architectures, recent research has explored hybrid approaches that
integrate U-Net with Vision-LSTM modules to overcome locality constraints. For instance, Chen
et al. [6]] replaced Mamba (a state-space model) with xXLSTM and outperformed CNN-based and
Transformer-based baselines over multiple medical domains. Additionally, models like U-VixLSTM
[9] have embedded Vision-LSTM blocks into the bottlenecks of a U-Net-shaped structure to attempt
to retain spatial inductive biases while capturing temporal relationships. Additionally, Swin-Unet
[4]], a variant of the Swin Transformer [12] in a U-shaped structure, was established specifically
for proficiency in medical image segmentation. The growing interest in implementing these hybrid
architectures in the medical domain motivates our proposed U-ViL architecture, which seeks to
address the contextual limitations inherent in cardiac image segmentation pipelines.

3 U-ViL: U-shaped Vision-LSTM

3.1 Architecture Overview
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Figure 1: (a) The overview of the proposed U-ViL. U-ViL consists of ViL blocks as the main
backbone in a U-shaped structure, with contracting and expanding paths. (b) The overview of the
Vision-LSTM (ViL) block. Each ViL block is built around the mLSTM, which parallelizes LSTM
operations by extending them to matrix form.

The overall architecture of the proposed U-ViL is presented in Figure[Ta] U-ViL consists of an encoder,
decoder, bottleneck, and skip connections, with the foundational block based on Vision-LSTM (ViL)).
At its core, the model leverages the ViL block as its fundamental unit, as seen in Figure[Tb] In the
encoder, images are initially divided into non-overlapping patches of size 4 x 4 and converted into
sequential embeddings. A linear embedding layer then projects these into an arbitrary feature space,
denoted as C'. These patch tokens are passed through multiple ViL blocks and patch merging layers to
build broad feature representations. The patch merging layer performs downsampling and increases
the feature dimension, while the ViL block handles feature extraction and representation learning.
Inspired by U-Net, a symmetric transformer-based decoder is constructed, consisting of ViL blocks
and patch expanding layers. It integrates the extracted deep features with multi-scale encoder features
through skip connections, mitigating spatial information loss from downsampling. In contrast to the



merging layer, the patch expanding layer is used for (2x) upsampling, as it rearranges neighboring
features into a larger resolution space. Finally, a last patch expanding layer executes (4 x ) upsampling
to recover the original image resolution (W x H), and a linear projection layer is applied to generate
pixel-level segmentation outputs.

3.2 Vision-LSTM (ViL) Block

The Vision-LSTM block introduces xXLLSTM to vision tasks, an exponential gating mechanism that
dynamically filters information to enhance its capability to capture complex patterns. xLSTM
introduces two distinct memory cells: scalar LSTM (sLSTM) and matrix LSTM (mLSTM). The
sLSTM employs a scalar update mechanism to boost robustness in extensive sequence scenarios,
while the mLLSTM extends vector operations into matrix form to improve efficiency. xLSTM can be
applied to images using patch tokenization, as in vision transformers, along with directional scanning
strategies—such as top-to-bottom and bottom-to-top passes—adapted from Vision Mamba [20] and
VMamba [11]. The broad previous success of Vision-LSTM (ViL) blocks raises the question
of whether it can serve as the main backbone for high-resolution vision tasks, such as image
segmentation. Our model’s ViL blocks (see Figure alternate mLSTM modules in a bidirectional
strategy to process patch tokenizations. Additionally, the d x d matrix memory in the mLLSTM and
associated scanning strategy enable the ViL blocks to operate within a single time step. The mLSTM
utilizes a modified version of the self-attention mechanism introduced in the Vision Transformer [8]],
facilitating parallelization and high efficiency.

3.3 Encoder

The encoder is designed to progressively extract feature representations from the input image. The
image is first partitioned into non-overlapping 4 x 4 patches, which are linearly projected to an
embedding dimension C, which is 96. This produces patch tokens with initial resolutions of % X %.
At each encoder stage, the patch tokens are processed by two consecutive ViL blocks, preserving
their spatial resolution while enriching feature representations. Following these blocks, a patch
merging layer reduces the spatial resolution by a factor of 2 and doubles the feature dimension by
concatenating spatially adjacent patches along the channel dimension, followed by a linear projection.
This process is repeated across three encoder stages, resulting in a multi-scale feature hierarchy at
progressively coarser resolutions.

3.4 Bottleneck

The bottleneck serves as the deepest layer of the network. Similarly to Swin-Unet [4], we employ
two consecutive ViL blocks within the bottleneck to capture deep feature representations effectively.
These blocks maintain both the feature dimension and spatial resolution, allowing the model to focus
on refining representations without further downsampling.

3.5 Decoder

The decoder mirrors the structure of the encoder but operates in reverse to progressively recover
spatial resolution and reconstruct the segmentation output. At each stage, the decoder employs a Vil
block to process feature maps, followed by a patch expanding layer that performs 2 x 2 upsampling.
The patch expanding operation begins by doubling the feature dimension via a linear projection and
rearranging features from the channel dimension into the spatial domain. Finally, it doubles the
resolution while reducing feature dimensionality by a factor of 2. After the final decoder stage, an
additional patch expanding layer performs 4 x 4 upsampling to restore the original input resolution
H x W. A linear projection layer is applied to the final upsampled features to produce pixel-level
segmentation outputs.

3.6 Skip Connections

Skip connections are integrated at each corresponding encoder-decoder stage to fuse low-level
spatial features with high-level semantic features. Specifically, the features from the encoder are
concatenated with the upsampled decoder features along the channel dimension. A linear projection
layer is then applied to the concatenated features, aligning them with the dimensionality expected by



subsequent ViL blocks. This strategy preserves fine-grained spatial details lost during downsampling
while enhancing the decoder’s capacity to maintain high precision.

4 Experiments

4.1 Dataset

We performed our experiments using the publicly accessible Automated Cardiac Diagnosis Chal-
lenge (ACDC) MRI cardiac segmentation dataset from the MICCAI 2017 Challenge [3]]. This dataset
includes MRI scans from 100 patients, each annotated with various cardiac structures. For each
patient, the dataset provides short-axis cine-MRI images acquired over the cardiac cycle, along with
manual annotations for key cardiac structures. The MR images are labeled to identify the left ventricle
(LV), right ventricle (RV), and myocardium (MYO). The dataset encompasses a wide spectrum of
pathological conditions grouped into five diagnostic categories: normal, myocardial infarction, dilated
cardiomyopathy, hypertrophic cardiomyopathy, and abnormal right ventricle. Additionally, the ACDC
dataset provides ground-truth segmentations for four primary regions of interest (ROIs): the LV
cavity, RV cavity, myocardium, and background. This diversity facilitates a comprehensive feature
space for training and evaluating segmentation algorithms, and supports reproducible comparisons
across different segmentation methods in cardiac image analysis research.

4.2 Implementation

The implementation was conducted using PyTorch 2.5.1 and CUDA 12.4 and utilized both GPU
and high-performance CPU capabilities. The full ACDC data processing pipeline, including data
transfer, model training, and inference, took around 4 hours. The datasets were tailored for 2D image
segmentation tasks, and U-ViL was trained for 10,000 iterations with a batch size of 4. Training
employed the Stochastic Gradient Descent optimizer with a learning rate of 0.01 and a momentum of
0.9, and model performance was assessed on the validation set every 200 iterations.

4.3 Evaluation Metrics and Loss Functions

To evaluate U-ViL’s performance, we employed three widely used metrics: Dice Similarity Coefficient
(Dice), 95th percentile Hausdorff Distance (HD 95%), and Average Surface Distance (ASD). The
Dice coefficient measures the overlap between the predicted and ground truth segmentations, with
values ranging from 0 (no overlap) to 1 (perfect overlap). It is a widely adopted metric for evaluating
segmentation accuracy, particularly in medical imaging. Given true positives (1'P), false positives
(F'P), and false negatives (F'N), the Dice coefficient is defined as:

2xTP

Dice — . 1
= X TP+ FP+ FN M

HD 95% quantifies the spatial discrepancy between the boundaries of predicted and ground truth
segmentations by computing the 95th percentile of the Hausdorff Distance, reducing the sensitivity to
outliers. It is formulated as:

Hausdorff Distance (HD) 95% = max <max min d(a, b), max mind(a, b)) . 2)
acA beB beB acA 95%

The Average Surface Distance (ASD) computes the mean distance between the surfaces of the
predicted and ground truth segmentations, offering a robust measure of boundary accuracy. It is
defined as:

. 1 . .
Average Surface Distance (ASD) = AT 1B (;4 min d(a,b) + b;g min d(a, b)) )

where A and B are the sets of surface points from the predicted and ground truth segmentations,
respectively, and d(a, b) denotes the Euclidean distance between points ¢ € A and b € B.

Cross-entropy (CE) loss is widely used in classification and segmentation tasks, particularly when
dealing with probabilistic outputs. It is derived from the Kullback-Leibler (KL) divergence, which



measures the dissimilarity between two probability distributions. In semantic segmentation, CE loss
quantifies the difference between the predicted class probabilities and the ground truth labels for each
voxel. It is defined as:

1 C N ‘ ‘
_ J J
LCE—_N §1 ‘§1pi logg;, 4
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where C'is the number of classes, IV is the number of voxels, pg is the ground truth indicator for class

1 at voxel 7, and qg represents the predicted probability for that class. This formulation encourages
the model to assign high probabilities to the correct classes while penalizing incorrect predictions.

The Dice loss is derived from the Sgrensen—Dice Coefficient (DSC), a statistical measure of set
similarity. It is particularly effective for segmentation tasks involving class imbalance, as it directly
optimizes for the overlap between predicted and ground truth masks. Introduced by Sudre et al. [16],
Dice loss is defined as:

" 2yy +
Lpice(y,9) =1 — m7 Q)
where y and ¢ represent the ground truth and predicted segmentation outputs and « is a small
constant added to prevent division by zero. Owing to its robustness to class imbalance, Dice loss
is well-suited for medical image segmentation. To balance voxel-wise accuracy and overlap, we
optimize a weighted sum of cross-entropy and Dice loss as:

£tol = Al‘cce + A2‘Cdicea (6)

1

with empirically chosen weights Ay = A2 = 3.

4.4 Results

Table [T] compares the segmentation performance of U-ViL against U-Net and Swin-Unet on the
ACDC cardiac MRI dataset using key metrics: Dice score, HD 95%, and Average Surface Distance
(ASD). U-Net achieves the highest accuracy, with a Dice score of 0.8985, HD 95% of 1.12 mm, and
ASD of 0.32 mm, indicating precise segmentation boundaries and minimal deviations. Swin-Unet,
while requiring significantly greater model capacity (27.26M parameters) compared to U-Net (1.81M
parameters), shows marginally lower segmentation performance, reflected by its DSC of 0.8844 and
increased HD 95% and ASD values. The proposed U-ViL architecture, leveraging Vision-LSTM
components, achieves lower computational cost (12.61 GFLOPS) compared to Swin-Unet (21.39
GFLOPS), but underperforms in segmentation accuracy across all metrics. Specifically, U-ViL
records a Dice score of 0.7555, HD 95% of 3.97 mm, and ASD of 1.23 mm, suggesting the need for
further refinement to balance efficiency with segmentation accuracy. These results highlight U-Net’s
efficiency and effectiveness, whereas the trade-offs in U-ViL emphasize the importance of optimizing
complexity and performance in segmentation tasks.

Table 1: Comparison of segmentation performance on the ACDC dataset. RV (Right Ventricle), MYO
(Myocardium), and LV (Left Ventricle) show class-wise Dice scores across cardiac regions.

Method Params M) FLOPS (G) | DSCT HD95% | ASD| RV MYO LV
U-Net 1.81 4.51 0.8985 1.12 0.32 | 0.8917 0.8687 0.9351
Swin-Unet 27.26 21.39 0.8844 3.18 1.03 | 0.8864 0.8452 0.9216
U-ViL (Ours) 28.33 12.61 0.7555 3.97 1.23 | 0.7247 0.7042 0.8378

Table 2: Ablation study evaluating U-ViL skip connections and input resolution.
Setting DSC HD95%

Using 1 skip connection 0.7330 4.52
Using 2 skip connections 0.7498 3.99
Using 3 skip connections 0.7555 3.97

Input image size 384 x 384 0.7578 4.07
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Figure 2: Visual comparisons of each method’s performance on four samples from the ACDC dataset.
Columns: (a) Ground Truth. (b) U-Net, (c) Swin-Unet, (d) Proposed method (U-ViL). The Il Right
Ventricle (RV), B Myocardium (MYO), and M Left Ventricle (LV) are highlighted.

To explore the influence of different architectural choices on U-ViL’s performance, we conducted
ablation studies focusing on two factors: the number of skip connections employing the proposed
attention strategy and the input resolution. Specifically, we investigated the effect of incorporating our
proposed attention at different resolution scales—%, %, and %—by varying their inclusion in the skip
connections for ¢ € 1,2, 3. This allowed us to assess how the depth of attention integration influences
segmentation quality. Table[2]demonstrates that the segmentation performance improves when the
number of our proposed modules in the skip connections increases, supporting the effectiveness of
the proposed module in enhancing feature representation. We also analyzed the effect of increasing
the input resolution to 384 x 384, and show slightly improved segmentation results with a high
computational cost. These findings suggest that both deeper attention integration and higher input
resolution can enhance the generalization capacity of U-ViL, as reflected by improved Dice scores.

5 Discussion

5.1 Summary of Findings

Although U-ViL did not outperform U-Net and Swin-Unet on standard segmentation metrics such
as Dice score, HD 95%, or ASD, its unique results include several noteworthy observations. Quan-
titatively, U-ViL recorded lower Dice scores across all three classes, including reductions on the
Myocardium (—0.167) and Right Ventricle (-0.0973) compared to U-Net. U-ViL also underper-
formed relative to Swin-Unet but offered a 42.5% reduction in floating point operations (FLOPs),
a notable improvement in computational efficiency. These results show that while U-ViL does
not yet outperform in segmentation quality, its efficiency and design offer a strong basis for future
refinements.



Importantly, qualitative analysis reveals that U-ViL captures structural representations distinct from
those of its baseline counterparts. For example, in Sample 2 of Figure[2] U-ViL segments the LV and
MYO with far stronger alignment to the ground truth than Swin-Unet does. These results indicate
that U-ViL introduces a novel inductive bias capable of emphasizing anatomical coherence in ways
not reflected by general metrics alone.

5.2 Interpretation and Implications

Our findings point to both architectural strengths, as well as areas of improvement in U-ViL. Both the
quantitative and qualitative findings suggest that the integration of Vision-LSTM blocks introduces
a distinct form of context-aware spatial encoding that differs from that of CNNs or Transformers.
While traditional CNNs emphasize locality and transformer models global attention, ViL. encoders
propagate sequential context, potentially offering improved modeling of structural consistency.

However, despite this theoretical benefit, U-ViL underperformed in traditional segmentation metrics.
One plausible explanation is that xLSTM, while well-suited to modeling global continuity, may lack
the fine-grained spatial precision necessary to capture detailed localized features unless explicitly
guided by spatial priors or attention mechanisms. Additionally, while the network’s skip connec-
tion strategy and decoder design were inspired by U-Net, it may not have been fully sufficient to
fully recover spatial detail following the encoding stages. This may have contributed to boundary
degradation, as evidenced by U-ViL’s higher HD 95% and ASD values.

Nevertheless, U-ViL’s competitive FLOPs and qualitative results make it a strong candidate as a
backbone for future hybrid segmentation designs, suggesting potential for deployment in resource-
constrained environments. The ability to integrate Vision-LSTM modules and long-range dependency
modeling into a U-shaped segmentation framework opens many potential doors for an efficient and
anatomically aware framework.

5.3 Limitations and Future Work

Several limitations in our implementation would show clear improvements in U-ViL’s performance
upon addressing. First, as previously mentioned, our ViL blocks may not explicitly capture spatial
locality with full effectiveness. Without sufficient regularization, these modules may underutilize
spatial features that are essential for high precision, so future work should integrate spatial attention
gates to improve boundary precision.

Additionally, U-ViL was trained and evaluated only on 2D slices rather than full 3D volumes. This
design limits its ability to capture inter-slice anatomical continuity—a critical aspect of volumetric
medical imaging. Extending the model to process 3D volumes would allow it to learn consistent
representations across adjacent slices, better leveraging the architecture’s capacity for modeling
long-range spatial dependencies within the volumetric context.

Finally, the size and diversity of the training dataset present an inherent limitation. While the ACDC
dataset is a well-accepted benchmark for standard segmentation tasks, it is still relatively small for
training deep architectures with data-hungry ViL. modules. For optimal performance of an architecture
like U-ViL, it may require a longer training schedule on a larger, more diverse dataset. Addressing
these points will be a helpful direction for future exploration of this architecture.

In summary, future work may benefit from: (1) adding spatially aware attention layers, (2) extending
to 3D volumetric modeling, and (3) scaling training to larger datasets. These directions will help
determine whether the representational benefits of XLSTM can be more fully realized in practical
segmentation tasks.

6 Conclusion

In this work, we introduced U-ViL, a novel U-shaped segmentation architecture that integrates
Vision-LSTM blocks into an encoder-decoder framework. Our motivation stemmed from an interest
in jointly modeling global contextual dependencies and localized anatomical structures for cardiac
MRI segmentation. Although U-ViL did not surpass existing baselines such as U-Net or Swin-Unet
in quantitative performance, it demonstrated both unique qualitative segmentation characteristics and
superior computational efficiency relative to transformer-based models.



U-ViL’s modularity and versatility make it a promising step toward future hybrid designs that optimize
performance and efficiency. Additional research should continue to explore the integration of spatial
priors, 3D volumetric modeling, and larger-scale training regimes to fully leverage the potential of
recurrence-based spatial modeling in medical segmentation.
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