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Abstract

Accurate classification of chest X-rays is critical for early diagnosis of pulmonary
diseases, especially in clinical settings where professional opinions are increasingly
difficult to come by. Thus, there exists a need for automated procedures that can
provide quick and accurate diagnoses. In this work, we evaluate whether the Swin
Transformer, a hierarchical Vision Transformer that employs shifted window
self-attention, can outperform traditional CNN-based models such as ResNet18
and VGG19 on medical classification tasks. We perform our evaluation on the
ChestMNIST dataset, a large and highly imbalanced benchmark for robust clas-
sification. In order to verify whether Swin is a comparable alternative to CNN
baselines through its ability to capture global context and long-range dependencies,
we implemented all three models with identical training conditions so that they
focus exclusively on subtle disease patterns. While our results show high classifica-
tion accuracy (>93%) across all three of the models, Swin consistently performs
the highest in both overall and classwise AUC, which was our metric of interest
due to its sensitivity to class imbalance. Additionally, all three of our implemented
and fine-tuned models surpassed the performance of the original MedMNISTv2
benchmark. These findings reinforce the promise of transformer-based architec-
tures in advancing clinical AI applications for medical imaging tasks requiring
both local detail and global contextual understanding. All source code is publicly
available at GitHub.

1 Introduction

Even in an era where chest X-rays are one of the most commonly utilized imaging modalities due to
their wide availability and low cost, pulmonary diseases remain a leading cause of mortality worldwide
[16]. However, interpreting chest X-rays requires specialized expertise since slight misinterpretation
can lead to dangerously incorrect diagnoses. New developments in artificial intelligence, and deep
learning in particular, have demonstrated substantial promise in supporting X-ray classification
and clinical decision-making. Nevertheless, many traditional deep learning models have trouble
with broad generalizability, especially in environments where subtle patterns may occur over large
separated spatial regions.

An additional challenge in automated chest X-ray classification lies in the data’s labeling and
organization. The ChestMNIST dataset [21], for example, which is a subset of the gold-standard
MedMNIST dataset [22], is a multilabel dataset where a sample from a single patient may contain a
single disease, multiple diseases, or no disease at all. Furthermore, this dataset is severely imbalanced,
with certain conditions (e.g., hernia, fibrosis) appearing much less often than others (e.g., effusion,
infiltration). This imbalance can easily complicate model training and lead to biased classifiers that
fail to detect rare but clinically critical pathologies because they learn to predict "false" on every
sample to achieve high accuracy. Consequently, for these problems, sensitivity-based metrics such as
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AUC and F1 score are increasingly valuable indicators of high performance, rather than just accuracy
or loss alone. Addressing class imbalance and improving model sensitivity remains a critical research
gap in clinical AI for chest radiography.

The prevailing paradigm for image classification in both the medical domain and in natural images
has been on using convolutional neural networks (CNNs), due to their strength in capturing local
low-level patterns. However, CNNs struggle to model long-range dependencies across images as a
whole, which becomes particularly notable in medical imaging domains like epidemelogy, where
different parts of an image can combine to paint a broader picture. To overcome these obstacles,
Vision Transformers (ViTs) have been proposed as alternatives to CNNs since they offer self-attention
mechanisms that can capture global relationships. Since standard ViTs are computationally expensive,
the Swin Transformer was proposed by Liu et al. [10] to focus on this problem. Swin applies attention
within local shifted windows while building hierarchical feature maps, which aims to maintain the
efficiency of CNNs on a local level and balance larger-scale global context modeling. While Swin’s
unique architecture has made it a strong performer on many baseline datasets like ImageNet, its
clinical potential in empirical domains remains underexplored.

Therefore, in this study, we investigate whether the Swin Transformer can perform well for multilabel
classification on ChestMNIST by benchmarking its performance against ResNet18 and VGG19, two
commonly-used convolutional models. Our experimental results show that the Swin Transformer
rivals both models in loss and accuracy, while achieving an AUC of 0.7799, outperforming ResNet18
(0.7552), VGG19 (0.7341), and the original published MedMNISTv2 baseline (0.75). These results
suggest that hierarchical transformer architectures like Swin may be worth further exploration in
complex clinical classification tasks, especially with imbalanced datasets. Our study seeks to highlight
the potential for integrating ViTs into the medical domain and motivate future work in continuing
further development.

2 Related Work

2.1 Vision Transformers

While transformers were initially introduced in natural language processing [19], the Vision Trans-
former (ViT), introduced by Dosovitskiy et al. [3] in 2021, adapted self-attention mechanisms towards
image data. This method of splitting images into patches and applying standard transformer encoders
was powerful, but nevertheless early ViTs required extremely large training datasets because of their
lack of inductive biases.

The Swin Transformer [10] was introduced with a unique architecture to address this shortcoming, as
it applies attention locally within non-overlapping windows, as well as shifting windows between
layers to capture cross-region dependencies. More specifically, Swin operates by building hierarchical
feature representations through patch merging. This approach effectively mimicked CNN multiscaling
and immediately achieved state-of-the-art results on standard vision tasks like image restoration [7].
Additionally, Swin has been applied to domain-specific applications, showing promising outcomes
in both the medical domain [8] and in other unique modalities [5]. These outcomes not only
demonstrate Swin’s immediate impact in empirical applications, but also suggests its potential for
continual development in the medical domain, where datasets are becoming increasingly powerful
and complex.

2.2 Deep Learning for Chest X-Rays

Within the domain of chest X-ray classification specifically, deep learning has recently become a
promising approach for automated and scalable analysis. For example, CheXNet [14] demonstrated
that a DenseNet-121 CNN could achieve radiologist-level performance on some pneumonia detection
tasks, and was later expanded into multilabel classification [13].

Other approaches have also explored this domain beyond convolutional architectures. For example,
Park et al. [11] demonstrated that pretraining Vision Transformers using self-supervised learning
on large unlabeled chest X-ray datasets can enhance downstream diagnostic performance on rare
pathologies. Similarly, Tiu et al. [17] revealed that self-supervised ViT models can achieve radiologist-
comparable accuracy. These modern approaches continue to show the possibilities of transformer-
based methods in medical imaging, further motivating our approach.
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2.3 CNNs vs. Transformers for Classification Tasks

There are a few architectural differences between CNNs and Transformers that have been explored
in recent research and set the models apart in their empirical use. To start, a CNN processes an
image through a hierarchy of layers, with convolutional filters that operate over a small receptive
field and iteratively build complex representations. While this hierarchical design captures fine-
grained structures well, it struggles to model long-range dependencies without stacking many layers.
Transformers, in contrast, use self-attention mechanisms to allow every patch to directly attend to
every other one, regardless of spatial distance, allowing for early layers to begin to capture global
context.

While ViTs originally had a reputation of requiring massive pretraining datasets to outperform CNNs,
newer strategies like DeiT [18] have demonstrated that ViTs can be trained effectively on mid-sized
datasets using strong augmentation and knowledge distillation. Additionally, in the medical domain,
Kim et al. [6] found that Vision Transformers like Swin can outperform CNNs like ResNet in a
variety of medical image classification tasks with small datasets. There are also some unique hybrid
architectures like CoAtNet [1] that have shown that combining both convolutional operations and
attention layers can begin to leverage both strengths.

3 Methods

3.1 Dataset

We utilized the ChestMNIST dataset, a multilabel subset of MedMNISTv2 [22], as our classification
baseline. MedMNIST is considered a gold-standard in the medical community: a curated benchmark
composed of lightweight medical imaging datasets. ChestMNIST itself contains grayscale chest ra-
diographs annotated for 14 different thoracic diseases, with each image labeled with binary indicators
(presence or absence) for each condition.

Figure 1: ChestMNIST Samples with Example Classifications [X]

The ChestMNIST dataset comprises 112,120 frontal chest X-ray images, preprocessed to a uniform
resolution of 28×28 pixels. Given the small image size and binarized labels, ChestMNIST serves as a
computationally efficient proxy for larger, high-resolution clinical datasets. However, the dataset is a
challenging task for large-scale classification because it is inherently imbalanced; most individual
samples contain a single condition, so negatives dominate the labeling.

Figure 2: ChestMNIST Training Set Class Imbalance
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3.2 Baseline Models

To establish an apples-to-apples baseline for comparison, we selected two widely-used and highly-
considered convolutional architectures: ResNet18 and VGG19. Both of these models have demon-
strated success in image classification tasks for years, and have even recently been validated within
chest X-ray analysis [2, 12, 20].

ResNet18 [4] rapidly gained recognition upon its introduction in 2015. Its introduction of residual
learning, which allows gradients to propagate more easily, allowed for deeper training without
vanishing gradients. VGG19 [15], on the other hand, is a more traditional deep CNN, with standard
sequential 3× 3 convolutional layers with periodic max-pooling. Although deeper than ResNet18,
VGG19 lacks residual connections and thus often lacks deeper optimization potential.

Both ResNet18 and VGG19 encode strong spatial locality priors through convolutional operations.
However, they contain key limitations in modeling long-range dependencies, which are critical for
connecting spatially separated findings. This motivates our exploration of the Swin Transformer, a
more advanced and modern architecture.

3.3 Swin Transformer

3.3.1 Architecture Overview

Figure 3: Swin Transformer Architecture

The Swin Transformer [10], as seen in Figure 3 marks a substantial advancement over traditional
CNNs and vanilla ViTs for image processing tasks. Unlike standard ViTs, which apply global
self-attention across all patches, the Swin Transformer applies self-attention within non-overlapping
local windows and introduces a hierarchical feature representation through patch merging. These
innovations combine the benefits of CNNs’ local receptive fields and hierarchical features with the
flexibility of transformer-based global modeling.

Swin processes an input image through four sequential stages. Each stage consists of multiple
Swin Transformer blocks, where each block performs multi-head self-attention restricted to local
windows followed by multilayer perceptrons (MLPs) applied to each patch. After every stage, patch
merging reduces spatial resolution while expanding the feature dimension, creating a hierarchical
representation.

The basic Swin building block includes:
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• Window-based Multi-head Self-Attention (W-MSA), which is restricted to patches within a
window.

• Shifted Window Multi-head Self-Attention (SW-MSA), which extends across shifted win-
dows to enable cross-window connections.

Along with these attention features, each building block also includes residual connections and layer
normalization. This emulates CNNs via progressively merging patches and allows for multiscale
feature learning on complex visual tasks.

3.3.2 Shifted Window Attention

Since window-based attention can introduce a limited receptive field, Swin employs a novel shifted
window mechanism. In every alternate layer, the window partitioning is shifted by half the window
size, so that the boundaries of the previous windows are now covered by the new windows.

The advantage of this shifted-window approach is two-fold: it allows for increased information
flow, and still maintains a similar cost. It also ensures that all tokens within an image can attend to
each other after a few layers while keeping the quadratic attention complexity confined within small
windows. This is essential for chest X-ray samples, where multiple conditions may be occurring at
vastly different parts of a single image.

3.3.3 Hierarchical Feature Representation

The Swin Transformer constructs a feature hierarchy by performing patch merging between stages,
with adjacent patches being concatenated and passed through a linear layer. This reduces spatial
dimensions and increasing feature depth, a hierarchical representation that is particularly important for
chest X-rays, where findings can vary dramatically in size and models must capture both fine-grained
and coarse-level features.

4 Experiments

4.1 Implementation

We implemented all models using PyTorch, leveraging open-source libraries such as timm for model
building and torchmetrics for evaluation. Additionally, we followed standard coding practices that
recommend configurable and generalizable code, which allowed us to swap easily between models
and hyperparameter settings as our experimentation progressed.

Each of our models was pretrained via ImageNet to accelerate convergence and allow computation to
focus solely on our specific domain. Our choice of optimizer was AdamW (weighted Adam), which
was configured with a learning rate of 1× 10−3, a momentum of 0.9, and a cosine annealing learning
rate scheduling. We set the batch size to 128 and trained each model for 10 epochs to maintain
impartiality when comparing between them.

Training was conducted on an NVIDIA CUDA GPU, operating over fixed seeds to maintain re-
producibility. Additionally, as is standard with deep learning experimentation, early stopping was
implemented based on validation loss, with the best-performing model being reloaded for downstream
inference and evaluation. To maintain thoroughness, we conducted our experimentation over three
independent trials for each model and reported averaged performance metrics to account for variance
due to random initialization and batch sampling.

4.2 Data Preparation

We utilized the default official ChestMNIST splits, which consist of:

• 78,000 training images

• 11,200 validation images

• 22,920 test images
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Before any training, each image was first resized to 224× 224 pixels to match the input requirements
of the pretrained networks. We also performed random data augmentation transformations on the
training data, including cropping, flipping, and rotating, with a goal of simulating natural variability
in data acquisition to improve generalization. Validation and test sets, on the other hand, underwent
only resizing and center cropping, without any augmentation.

Additionally, given the severe class imbalance, we attempted a re-weighted sampling strategy for
the training set. This included assigning a weight inversely proportional to an image’s respective
frequency, to attempt to scale minority classes proportionally. Further class imbalance mitigations
were also considered in the loss function selection and implementation.

4.3 Evaluation Metrics and Loss Functions

Given the severe class imbalance in ChestMNIST, we focused on evaluation metrics sensitive to rare
classes rather than simply depending on overall accuracy. Thus, the primary metric that we focused
on was the Area Under the ROC Curve (AUC), calculated both per-class and macro-averaged across
all classes. AUC evaluates ranking quality and is an ideal metric for imbalanced multilabel tasks.
While we still computed accuracy and loss over each model’s epochs, we didn’t assign much weight
to their outcomes given that we expected all three models to converge to strong values quickly.

For our loss function, we implemented several different approaches but settled on Focal Loss [9].
Focal Loss is especially beneficial in highly imbalanced datasets because it dynamically scales to
focus on more difficult examples (in our example, positives). More specifically, we implemented
focal loss with α = 1.0 and γ = 2.0, following common conventions to balance the contributions of
positive and negative samples.

5 Results

5.1 Quantitative Results

As expected before our experimentation, all three of our models quickly converged to low training and
validation loss, verifying our hypothesis that accuracy would not be a discriminatory metric between
them. VGG19, ResNet18, and Swin Transformer all reached over 93% classification accuracy in
fewer than 10 epochs each:

(a) VGG19 (b) ResNet18 (c) Swin Transformer

Figure 4: Comparison of loss (top) and accuracy (bottom) for training and validation across models.

While we found that Swin’s CNN counterparts slightly outperformed it in accuracy, Swin consistently
performed the best in AUC, which we hypothesized would be a far more indicative measure of
performance in an imbalanced dataset. We even compared Swin’s sensitivity-based output metrics
with MedMNISTv2’s original baseline, and found that Swin outmatched all three of its competitors in
both overall and class-wise AUC performance. Table 2 shows even more specific results, with Swin
outperforming its CNN counterparts in 12 of the 14 classes (including on all of the rarest labels):
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Table 1: Performance Comparison Across Each Model
Model / Baseline Accuracy AUC
VGG19 0.9386 0.7341
ResNet18 0.9388 0.7552
Swin Transformer 0.9335 0.7799
MedMNISTv2 Baseline 0.9218 0.7500

Table 2: Class-wise AUC Comparison Across Each Model
Class VGG19 ResNet18 Swin Transformer
Atelectasis 0.7089 0.7522 0.7601
Cardiomegaly 0.7622 0.8687 0.8862
Effusion 0.7888 0.8418 0.8514
Infiltration 0.6258 0.6236 0.6570
Mass 0.6306 0.6910 0.7703
Nodule 0.5953 0.6375 0.6530
Pneumonia 0.5868 0.6444 0.6781
Pneumothorax 0.7364 0.8183 0.8540
Consolidation 0.7285 0.7470 0.6981
Edema 0.8273 0.8597 0.8744
Emphysema 0.7166 0.8472 0.8888
Fibrosis 0.6458 0.7143 0.7192
Pleural Thickening 0.6315 0.7018 0.6973
Hernia 0.8494 0.8289 0.8658

5.2 Comparison to Existing Literature

As seen in Table 1, results exceed the published MedMNISTv2 baselines, which reported an average of
0.75 AUC and 0.9218 accuracy for ChestMNIST classification [22]. Compared to the MedMNISTv2
baselines, all three of our models surpassed the reported accuracy, but only the Swin Transformer
significantly outperformed the baseline AUC.

Previous deep learning models for chest X-ray classification predominantly employed deep CNN
architectures which, while highly successful, did not explicitly address the need for long-range
contextual reasoning within images. Our results corroborate findings that show that self-attention
architectures can rival CNN baselines with sufficient training and demonstrate that the Swin Trans-
former’s shifted window attention and hierarchical representation confer measurable advantages on
ChestMNIST.

Overall, our findings reinforce the emerging consensus that transformer-based models can rival,
or even outperform, convolutional architectures in medical image classification, especially when
sensitivity to rare pathologies is critical.

6 Discussion

6.1 Interpretation and Implications

Our results confirm the growing trend that vision transformers can match or exceed CNN perfor-
mance in medical imaging tasks when adequately fine-tuned towards a specific domain. The Swin
Transformer’s skill of juggling local fine-grained feature extraction with global context modeling is
particularly well-suited for chest X-ray interpretation, where abnormalities may be spatially diffuse,
subtle, or involve multiple anatomical regions.

Additionally, Swin’s high AUC score demonstrates better discriminatory power across both common
and rare diseases and adds further emphasis to the significance of sensitivity-focused metrics in
imbalanced datasets, showing that simply focusing on high accuracy may be naïve.
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These results represent important indications and takeaways:

• Hierarchical vision transformers, such as Swin, may be beneficial clinical AI tools in tasks
with rare pathology detection.

• It is possible to adapt ViTs to real-world clinical settings without overly large datasets.

• Model architecture selection in medical imaging should increasingly consider attention-
based mechanisms when there is a domain need for capturing global relationships.

6.2 Limitations and Future Work

In light of our encouraging results, several limitations in our approach and methodology must be
acknowledged. First, our ChestMNIST dataset consists of low-resolution 28× 28 images, resized
to 224 × 224 for compatibility with ImageNet-pretrained models. While this was sufficient for
experimental validation, it likely fails to perfectly replicate the complexity of high-resolution clinical
chest radiographs. Future work should evaluate Swin Transformers directly on full-resolution clinical
datasets to ensure that high performance is maintained.

Additionally, although Swin outperformed CNNs on most of the class-wise AUC outcomes, there
were still two disease classes (consolidation and pleural thickening) that posed notable challenges.
Further optimization of class-balanced loss functions and uncertainty modeling may be needed to
improve sensitivity on these rare, but extremely important classes.

Third, due to computational constraints, we conducted training on pretrained weights at a slightly
higher learning rate for only 10 epochs. While all three of our models converged quickly and
consistently, extended training would allow for particularly robustness. This is particularly true for
Swin, given the data-hungry nature of ViTs, so we expect its high performance would likely continue
to separate itself from its competitors if it is given further training and refinement.

7 Conclusion

To conclude, this work explored the hypothesis that the Swin Transformer would be a high-performing
architecture on multilabeled chest X-ray classification. Our results validate this hypothesis and
demonstrate a substantial outperformance compared to traditional convolutional neural networks.
Swin achieved notably higher AUC scores while maintaining competitive accuracy, additionally
outperforming MedMNISTv2’s original benchmark metrics, indicating superior sensitivity and
generalization to rare disease classes.

Our findings add to the growing body of evidence that vision transformers, when properly adapted,
can function as effective tools for medical imaging applications. The Swin Transformer offers a
promising way forward for building more accurate, sensitive, and clinically reliable AI models for
diagnostic radiology tasks. This analysis emphasizes the critical role of architectural choices in model
development and suggests that hierarchical attention-based methods will play an increasingly pivotal
role in the next generation of medical AI systems.
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